Американский Научный Журнал CORRECTION OF DETECTED DISORDERS OF ENERGY METABOLISM UNDER THE COMBINED ACTION OF CADMODIUM CHLORIDE AND SODIUM NITRITE (6-12)

Cadmium and nitrites lead to the development of tissue hypoxia. It is also known that the antidote to cadmium salts is lipoic acid, and nitrites - ascorbic acid. The purpose of this study was to find out the state of energy metabolism in rats in the conditions of combined action of cadmium chloride and sodium nitrite and correction of detected disorders with the help of lipoic and ascorbic acids. Intoxication was modeled as follows: cadmium chloride is administered intramuscularly, sodium nitrite with drinking water. In order to correct injected lipoic and ascorbic acid in the water solution orally. The material was collected after being beheaded under thiopental anesthesia on the 14th, 28th day after the introduction of the substance carriers. The results indicate an increase in adenosine triphosphoric acid concentration and a decrease in alphaketogluttaratehydrogenase activity in all experimental animal organs throughout the studied period. Research can serve as a basis for understanding the features of energy metabolism in organs and tissues in the conditions of influence of lipoic and ascorbic acids in cadmium-nitrite intoxication. Скачать в формате PDF
6 American Scientific Journal № ( 38) / 2020
Таблица 2
Влияние препарата МК:ТГК 0,00:0,5 на фотосинтетическую деятель ность
растений озимой пщеницы
Вариант

Продуктивность работ ы листьев, г/дм 2 ЧПФ, г/м 2 сутки межфазных период:выход в
трубку - польная спелость Фаза выхода в
трубку Фаза полной спелости
Контроль 3,7 17,3 16,3
ДКМ -1 2,7 12,0 11,3

Согласно же выводам М.Н.Никифорова (1975)
благоприятные условия для формировани я
зерновой продуктивности складываются тогда,
когда листовая поверхность будет не только
максимальной, но и должна оставаться более
длительное время жизнеспособной. Поэтом у в
вариантах с препаратом ДКМ -1 создаются такие
условия жизнедеятельности растений, когда
продлевается срок жизни листьев и
сформированная листовая поверхность
осуществляет фотосинтез на высоком уровне.

Список литературы
1. Лукьянова С.В., Тойчи ев А.А., Далимов
Д.Н., Гагельганс А.И., Тонких А.К. Действие
глицирризиновой кислоты на растен ия. //Химия
природных соединений. 2001. Спец выпуск. - С.14 -
15.
2. Лукьянова С.В., Тойчиев А.А., Джураев
А.Д., Далимов Д.Н., Тонких А.К. Действие
глицирризиновой кислоты на рецепторы для
фитогормонов. //Химия природных соединений.
2002. Спец выпуск. - С.14 -15.
3. Тойчиев А.А., Лукьянова С.В., Далимов
Д.Н., Тонких А.К. О регулировании кальцевого
гомеостаза растительных клеток глицирризиново й
кислотой. //Химия природных соединений. 2002.
Спец выпуск. - С. 66 -67.
4. Губанов Я.В., Иванов К. Н. Озимая пшеница.
- М.: Агропромиздат, 1988. -303 с.
5. Доспехов Б.А. Методика полевого опыта. -
М.: Колос, 1979. - 416 с.
6. Никифоров М.Н. Устойчивость яровой
пшеницы к грибным болезням в условиях кубани.
Бюлл . ВИР Л. 1975. Вып . 50. -С. 15 -19.
UDC 577.121.7 +616 -092.9 +546. 48+546.173

CORRECTION OF DETE CT ED DISORDERS OF ENERGY METABOLISM UNDER THE
COMBINED ACTION OF C ADMODIUM CHLORIDE AN D SODIUM NITRITE

Kuras L. D.
Assistant of the Department of Biological and Medical Chemistry
named after G.O. Babenka
Ivano -Frankivsk Natio nal Medical University
Ivano -Frankivsk , Ukraine

КОРРЕКЦИЯ НАРУШЕНИЙ ЭНЕРГЕТИЧЕСКОГО ОБМЕНА ПРИ УСЛОВИЯХ
СО ЧЕТАЕМОГО ДЕЙСТВИЯ КАДМИЯ ХЛОРИДА И НАТРИЯ НИТРИТА

Курас Лилия Дмитриевна
Ассистент кафедры биологической и медицинской химии имени Г.А. Бабенко
Ивано -Франковского национального медицинского универ ситета
Ивано -Франковск, Украина

Summary. Cadmium and nitrites lead to the development of tissue hypoxia. It is also known that the antidote
to cadmium salts is lipoic acid, and nitrites - ascorbic acid. The purpose of this study was to find out the state of
energy metabolism in rats in the conditions of combined action of cadmium chloride and sodium nitrite and
correction of detected disorders with the help of lipoic and ascorbic acids.
Intoxication was modeled as follows: cadmium chloride is administered intramuscularly, sodium nitrite with
drinking water. In order to correct injected lipo ic and ascorbic acid in the water solution orally. The material was
collected after being beheaded under thiopental anesthesia on the 14th, 28th day after the introducti on of the
substance carriers.
The results indicate an increase in adenosine triphosphoric acid concentration and a decrease in alpha -
ketogluttaratehydrogenase activity in all experimental animal organs throughout the stud ied period. Research can
serve as a basis for understanding the f eatures of energy metabolism in organs and tissues in the conditions of
influence of lipoic and ascorbic acids in cadmium -nitrite intoxication.
Аннотация. Кадми и и нитрит ы приводят к развитию гипоксии тканей. Известно также, что
противоядием от действия солей кадмия является липоевая кислота, а нитритов – аскорбиновая кислота.
Целью данного исследования было выяснить состояние энергетического обме на в тканях животных (крыс)
в условиях комбинированного действия хлори да кадмия и нитри та натрия и ко ррекции выявленных
аномалий с помощью липоевой и аскорбиновой кислот.

American Scientific Journal № ( 38) / 2020 7

Интоксикация была смоделирована следующим образом: хлорид кадмия вводится внутримышеч но,
натрий нитрит с питьевой водой в дозе 1/10 LD 50. После инто ксикации животны м с целью коррекции
вводят липоевую и аскорбиновую кислоты в водном растворе перорально. Сбор материала осуществлялся
после обезглавливания под тиопенталовым наркозом на 14 -, 28 -ой день после введения токсикантов.
Результаты указывают на увеличение концентрации АТФ и снижении активности альфа -
кетоглутаратдегидрогеназы во всех органах экспериментальных животных в течение всего периода
исследований . Исследования могут послужить ос новой для понимания особенностей энергетического
обмена в органах и тканях в условиях вли яния липоевой и аскорбиновой кислот при кадмиево -нитритной
интоксикации.
Keywords : energy metabolism , cadmium chloride, sodium nit rite , lipoic acid, ascorbic acid.
Кл юч евые слова : энергетический обмен, хлорид кадмия, нитрит натрия, липоевая кислота,
аскорбиновая кислота

INTRODUCTION . Xenobiotics – cadmium
chloride and sodium nitrite – cause the development of
tissue hypoxia, inhibit the antioxidant system of living
organisms [1, 2, 8], which in turn can lead to a negative
impact on the cell's energy supply system. It is known
from the scientific literature [1, 9] about the
disturbances of the energy metabolism processes by the
separate action of cadmium chloride and sodium nitrite,
but at the same time their combined effect has been
litt le studied. Particularly relevant is the issue of
correction of determined disorders that cause the
experimental xenobiotics [10]. It is known that the
antidote to the action of cadmium salts is lipoic acid
[10, 1 5] and the action of nitrites is ascorbic a cid [10,
13, 16]. Lipoic acid is involved in the processes of
oxidative decarboxylation of alpha -keto acids, thus
eliminating impaired tissue respiration [1 5]. Ascorbic
acid promotes ir on absorption in the intestine, which is
important for hemoglobin synth esis and activation of
cytochrome oxidases involved in tissue respiration [1 3,
16].
In view of the foregoing, the purpose of this study
was to determine the state of energy metabolism i n the
tissues of experimental animals (rats) under the
conditions of co mbined action of cadmium chloride
and sodium nitrite, and the correction of the detected
disorders with the help of lipoic and ascorbic acids.
MATERIALS AND METHODS . The studies
were pe rformed on white outbred laboratory rats -males
weighing 180 -220 g, which were kept on a standard diet
of vivarium. Toxic damage was caused by cadmium
chloride ( CdCl 2) and sodium nitrite ( NaNO 2). The
intoxication was modeled as follows: cadmium
chloride was administered intramuscularly at a dose of
1.2 mg / kg body weight of the animal (1/10 LD 50), and
sodium nitrite was injected with drinking water at a rate
of 2.1 mg / kg body weight of the animal at a dose of
1/10 LD 50 once a day for 10 days [9]. Intact a nimals
were simultaneously administered an appropriate
amount of 0.9% sodium chloride solution. After
intoxication of CdCl 2 and NaNO 2, the animals were
simultaneously administered lipoic and ascorbic acids
in the aqueous solution oral (during the p eriod , until the
14th and 28th days of research). Recalculation of d ose
vitamins for animals was performed according to the
conventional method Rybolovlev Yu. R. [7] . The
studied animals were divided into 3 groups: group I –
intact animals; group II – animals into xicated with
cadmium chloride and sodium nitrite; group III –
animals that were administered lipoic and ascorbic acid
simultaneously after intoxication. Brain, heart , and
liver homogenates were used for the study. Material
was collected after decapitation under thiopental
anesthesia on the 14 th, 28 th day s days after the
introduction of toxicants according to the rules of the
European Convention on the Humane Treatment of
La boratory Animals (Strasbourg, 1986). Indicators of
energy metabolism were determined as follows: Na +,
K+ - activating, Mg 2+ - dependent ATPase activity – by
the difference of activities in the presence and absence
of ubaine (strophanthin) [11]; lactate dehydrogenase
(LDH) activity – spectrophotometrically according to
the set of "Phyllis it-Diagnostics" (Ukraine); glucose
concentration by glucose oxidase me thod using the
“Phyllis it-Diagnostics” (Ukraine); the content of
pyruvic acid – by the number of 2,4 -
dinitrophenylhydrazone (2,4 -DNFG) derivatives [6];
lactic acid level – by reaction with paraoxydiphenyl [3];
adenosine triphosphoric acid (ATP ) – by the am ount of
phosphorus (modified by Aleynikov and Rubtsov) [5].
The activity of alpha -ketoglutarate dehydrogenase [5],
isocitrate dehydrogenase [1 4], malate dehydrogenase
[12], succinate dehyd rogenase [5] was determined
spectrophotometrically. The results obta ined were
subjected to statistical analysis according to the
conventional method [4] using the Student's t -test
(Statstica 8).
RESULTS and DISCUSSION . From scientific
literature is known [ 8, 14], and the results of their own
studies confirm that the combined action of two
different by nature xenoobtics – cadmium chloride and
sodium nitride causes the development of hypoxia and
the violation of the energy supply of cells. Based on
this, we u se drugs of lipoic and ascorbic acids to correct
the detected disorders in the body of experimental
animals in the dynamics of intoxication of studied
xenobiotics.
The results of the study of ATP content in various
organs of intoxicated animals under condi tions of lipoic
and ascorbic acids significantly increased (more than
100 fold ) the concentration of ATP in the brain and
liver , and 25 -fold in the heart on the 14th day (Table 1).
At day 28 th, ATP levels increased the most in cardiac
tissue and liver – 20 - 47 folds , respectively , in the brain
– 7,8-fold . When comparing the results of the groups of
animals treated with of lipoic and ascorbic acids
relative to the control group, there was a sig nificant
(p≤0.001) increase in the concentration of ATP in the
organs of animals treated with of lipoic and ascorbic
acids .

8 American Scientific Journal № ( 38) / 2020
Table 1
Indicators of energy metabolism in organs of experimental animals with the use of lipoic and ascorbic
acids under conditions of combined exposure of cadmium chloride and sodium nitrite .
Groups
Parameters
ATP , micromol /g ATP -asa, micromol  Pi /mg hour
Brain Heart Liver Brain Heart Liver
Control 3,09±
0,29
7,08±
1,27
1,02±
0,03
251,30±
53,04
438,57±
121,31
274,13±
40,74
14th day
CdCl 2+NaNO 2
2,38±
0,35
5,39±
1,98
3,01±
0,73*
2710,38±
798,13*
4160,54±
459,62*
424,49±
104,62
14th day CdCl 2+NaNO 2
& vitamins
391,33±
45,83* 137,36±
11,88*
410,40±
28,16*
121,42±
25,49*
79,08±
7,04*
15,73±
1,32*
28th day
CdCl 2+NaNO 2
7,37±
2,16*
7,30±
0,23
5,95±
1,28*
486,22±
256,19
101,89±
23,14*
448,85±
92,19*
28th day
CdCl 2+NaNO 2
& vitamins
57,66±
12,32*
147,79±
26,65*
279,64±
32,19*
6,18±
1,08*
17,22±
2,64*
11,67±
1,38*
* - different from control with p≤0,001 by Student's test

At the same time, we observed a 22 -fold decrease
in ATPase activity in th e brain, a 53 -fold increase in the
myocardium, and a 27 -fold decrease in the liver on the
14th day in animals treated with of lipoic and ascorbic
acids rel ative to the comparison groups II. When
comparing the activities of ATPase in the brain of
intoxicate d animals and those who after correction on
day 14 th, a positive correlation was observed, the
correlation coefficient was r = 0.853006. In the late
period of the study, this indicator also decreased in all
studied organs: in the brain – 78 -fold , in the
my ocardium – 6-fold , and in the liver – 38-fold in
animals treated with of lipoic and ascorbic acids (Table
1). Comparison of the results with the contro l gr oup of
animals showed a significant decrease in the activity of
ATPase in the organs of animals treat ed with of lipoic
and ascorbic acids .
Studies of the activities of the enzymes of the
tricarboxylic acid s cycle responsible for the energy
supply of ce lls showed an increase in the activities of
isocitrate dehydrogenase, succinate dehydrogenase and
malate dehydrogenase in all organs of experimental
animals treated with of lipoic and ascorbic acids . In
particular, the activity of isocitrate dehydrogenase
incr eased (Fig. 1): in the brain – 3,5-fold on the 14th
day and 3 -fold on the 28th day; in the heart tiss ue – 8-
fold on the 14th day and 11 ,5-fold on the 28th day; in
the liver – an increase on the 40% in the late period.
Analysis of enzyme activity against th e control group
of animals showed increase on the 60% in the brain in
the early period and in the myo cardium throughout the
period: 4 -fold in the early and 6 -fold in the later
periods.

Figur e 1. The activity of isocitrate dehydrogenase (μmol NADH / m in • mg protein ) in the studied organs of
experimental animals with the use of lipoic and ascorbic ac ids under conditions of combined exposure of
cadmium chloride and sodium nitrite.
Note: here and in the following figures: * - different from control with p≤0,001 by Student's test,
** - different from control with p≤0,01 by Student's test

The activity of alpha -кеtoglutarate dehydrogenase
decreased during the stud ied period in all organs of
experime ntal animals treated with of lipoic and
ascorbic acids (Fig. 2). The maximum decrease was
**
*
*
0
25
50
75
100
125
150
Brain Heart Liver Control
14th day CdCl2+ NaNO2
*
*
0
70
140
210
Brain Heart Liver
Control
28th day CdCl2+ NaNO2

American Scientific Journal № ( 38) / 2020 9

observed in the liver on the 28th day – 8,7-fold and on
the 14th da y – 7,5-fold . In the br ain, enzyme activity
decreased by 14 -fold on the 14th day, with a correlatio n
coefficient of r = 0.840944 and 3 ,5-fold on the 28th day.
The decrease was also observed in the myocardium 2 -
fold on the 28th day of the study. Moreover, t he activity
of the enzy me was lower than that of the control group
of animals in all organs studied by us.

Figure 2. The activity of alpha -ketoglutarate dehydrogenase (μmol NADH / min • mg protein ) in the in the studied
organs of experimental animals with the use of lipoic and ascorbic acids under conditions of combined exposure
of cadmium chlori de and sodium nitrite .

Succinate dehydrogena se activity increased in the
myocardium and brain (Fig. 3) both on day 14 and day
28 of the experiment in the group of animals trea ted
with of lipoic and ascorbic acids . In particular, for the
brain on the 14th day – 5-fold (the correlation
coefficient was r = 0,755266), on the 28th day – 4-fold ,
and for the myocardium – 4-fold and 2 ,5-fold ,
respectively. In the liver, enzyme activity also
increased 3 -fold throughout the stud ied period in
animals treated with of lipoic and ascorbic acids . A
comparative anal ysis of the activity of succinate
dehydrogenase relative to the control group of animals
showed an increase in this indicat or in all organs
studied throughout the stud ied period.

Figure 3. The activity of succinate dehydrogenase (nmol succinate / min • mg protein) in the studied organs of
experimental animals with the use of lipoic and ascorbic acids under conditions of combined exposure of
cadmium chloride and sodium nitrite .

The activity of the last en zyme of the tricarboxylic
acid s cycle – malate dehydrogenase (MDG) was also
increased in all investigated organs of experimental
animals treated with of lipoic and ascorbic acids (Fig.
4). In the brain, enzyme activity increased 3.5 and 2 -
folds on day 14 th and 28 th, respectively; in the
myocard ium on the 14th day – 6-fold , and on the 28th
– 3-fold relative to group II. The results obtained were
significantly higher in the brain and heart of
experimental animals treated with of lipoic and
ascorbic acids comp ared to the control group of
animals. I n the l iver, there were slight changes in the
activity of MDG.

*
*
0
15
30
45
60
75
Brain Heart Liver
Control
14th day CdCl2+ NaNO2
** *
0
22
44
66
88
110
Brain Heart Liver
Control
28th day CdCl2+ NaNO2
28th day CdCl2+ NaNO2 & vitamins
*
*
*
0
90
180
270
360
450
Brain Heart Liver
Control
14th day CdCl2+ NaNO2
14th day CdCl2+ NaNO2 & vitamins
*
*
*
0
150
300
450
600
750
900
Brain Heart Liver Control
28th day CdCl2+ NaNO2
28th day CdCl2+ NaNO2 & vitamins

10 American Scientific Journal № ( 38) / 2020
Figure 4. The activity of malate dehydrogenase (μmol NADH / min • mg protein ) in the studied organs of
experimental animals with the use of lipoic a nd ascorbic acids under conditions of combined exposure of
cadmium chloride and sodium nitrite.

Glucose is a fast source of energy for a living
organism. The peculiarity of glucose utilization is that
it is oxidized under aerobic and anaerobic conditions .
Studies of glucose in th e brain showed a dec rease
throughout the all study period of almost 2 -fold and a
maximum decrease in the myocardium – 34-fold on the
28th day in experimental animals treated with of lipoic
and ascorbic acids (Table. 2) . And were a lso
significantly lower than indicators of the control group
of animals. In the liver, glucose levels increased 2 -fold
in the late period (Table 2). This may indicate impaired
glucose uptake in brain and myocardial cells,
redistribution between organs, or incr eased use of it as
one of the mechanisms o f cell adaptation.
Table 2
Glucose concentration and lactate dehydrogenase activity in the studied organs of experimental animals
with the use of lipoic and ascorbic acids under conditions of combined exposure of cadmium chloride and
sodium nitrite.
Group s
Parameters
Glucose, milimol/g Lactate dehydrogenase ,
micromol/s g
Brain Heart Liver Brain Heart Liver
Control 11,45±
2,44
13,23±
4,05
29,86±
7,97
2,09±
0,78
3,33±
0,58
1,35±
0,46
14th day
CdCl 2+NaNO 2
4,95±
0,86*
11,78±
2,62
39,12±
11,05
2,39±
0,8 3*
0,38±
0,13*
0,19±
0,04*
14th day
CdCl 2+NaNO 2
& vitamins
2,52±
0,36*
5,28±
0,90*
45,48±
10,27
1,99±
0,30
2,48±
0,33
2,67±
0,34*
28th day
CdCl 2+NaNO 2
6,73±
1,88
156,72±
13,08
19,01±
7,26
8,21±
2,66
0,26±
0,07*
0,65±
0,19
28th day
CdCl 2+NaNO 2
& vitamin s
3,47±
0,28*
4,58±
1,03*
43,73±
8,95
3,42±
0,77
3,88±
0,52
1,86±
0,21
* - different from control with p≤0,001 by Student's test

The change in lactate dehydrogenase activity
indicates different directionalit y of processes that can
occur under both aerob ic and anaerobic conditions. The
activity of the enzyme in the brain decreased at the 2,5-
fold in the late period stud ies . In the myocardium,
enzyme activity increased throughout the stud ied
period: by the 14th day – 6,5-fold and by the 28th day
– 15 -fold , and there was a tendency to the level of
control groups of animals. In t he liver also showed an
increase in enzyme activity on th e 14th day at 14 -fold
and on the 28th day at 3-fold (Table 2). Comparative
analy sis with the control group of animals showed a 2-
fold increase in LDH activity on the 14th observation
day.
Activation of the processes of anaerobic glucose
oxidation is evidenced by the increase in lactate levels
during the whole stud ied period in all org ans of
experimental animals treated with of lipoic and
ascorbic acids (Fig. 5). The concentration of lactic acid
increased in the brain 14 -fold on the 14th day and 4 -
fold on the 28th day. The level of lactate in the
myocardium maximally increased on the 14 th day at
55 -fold and 5 -fold on the 28th day. In t he liver also
observed an increase in the content of lactic acid by 29 -
fold on the 14th day a nd 6 -fold on the 28th day.
Comparison with controls also showed an increase in
lactic acid concentration througho ut the stud ied period
in all organs of experim ental animals treated with of
lipoic and ascorbic acids .

*
*
0
20
40
Brain Heart Liver Control
14th day CdCl2+ NaNO2
14th day CdCl2+ NaNO2 & vitamins
*
0
5
10
15
20
25
Brain Heart Liver Control
28th day CdCl2+ NaNO2
28th day CdCl2+ NaNO2 & vitamins

American Scientific Journal № ( 38) / 2020 11

Figure 5: Concentration of lactic acid (mmol / g tissue ) in the studied organs of experimental animals with the use
of lipoic and ascorbic acids un der conditions of combined exposure of cadmium chloride and sodium nitrite .

At the same time, the concentration of pyruvic
acid decreased throughout the studied period in all
organs of experimental animals treated with of lipoic
and ascorbic acids (Fig. 6). In the brain, the level of
pyruvate decrea sed 1.5 -2-folds , in the myocardium –
decreased slightly throughout the stud ied period. In the
liver, the concentration of pyruvate was 2 ,2-fold lower
throughout the experiment and on the 14th day there
was a po sitive correlation between the concentration o f
pyruvic acid in animals’ group II and the animals after
correction, which was r = 0.814658.

Figure 6: Concentration of pyruvic acid (μmol / g tissue ) in the studied organs of experimental animals with t he
use of lipoic and ascorbic acids under cond itions of combined exposure of cadmium chloride and sodium nitrite .

The results obtained indicate that the preparations
of lipoic and ascorbic acids have a positive effect on the
energy supply of cells of dif ferent organs as one of the
key mechanisms in the processes of biochemical
adap tation of experimental animals to the combined
action of cadmium chloride and sodium nitrite .
Conclusions.
1. Our studies have allowed us to establish the
multidirectional nature o f changes in the studied
metabolites and activ ities of enzymes in the organs of
intoxicated animals and animals after correction .
2. In all organs of experimental animals, an
increase in th e concentration of ATP was observed
throughout the stud ied period, wit h a simultaneous
decrease in ATPase activity.
3. The activity dehydrogenases at the
tricarboxylic acids cycle's increased except for alpha -
ketoglutarate dehydrogenase, which decreased in al l
organs of experimental animals throughout the study
period.
4. Lactate dehydrogenase activity and lactic acid
concent ration increased in all organs of experimental
animals throughout the stud ied period.
5. The obtained results can serve as a basis for
understa nding the features of energy metabolism in
organs and tissues under th e conditions of exposure to
lipoic and ascorbi c acids under cadmium -nitrite
intoxication.

REFERENCES
1. Гунчак В. М. До токсикології нітратів і
нітритів у тварин // Науковий вісник ЛНУВМБТ
імені С.З. Гжицького. 2013 . № 3 (57). C. 62 -70.
[Gunchak VM Do toksykologii' nitrativ i nitrytiv u
tvaryn . Naukovyj visnyk LNUVMB T imeni S.Z.
Gzhyc'kogo. 2013 ;57 (3):62-70. (In Ukr).]
2. Дереча Л .М. Макро - і мікроелементи :
сучасні уявлення про їх функціональне значення в
теплокровному організмі // Експериментальна і
клінічна медицина . 2007 . №4. С. 21 -27. [Derecha LM
Makro - i mikroelementy: suchasni ujavlennja pro i'h
funkcional 'ne znachennja v teplokrovnomu organizmi .
Eksperymental'na i klinichna medycyna. 2007 ;(4):21-
27 . (In Ukr) .]
3. Левченко В.І., Головаха В.І., Кондрахін
І.П. та ін. Методи лабораторної клінічної
*
*
*
0
3
6
9
12
Brain Heart Liver
Control
14th day CdCl2+ NaNO2
*
*
*
0
5
10
15
Brain Heart Liver Control
28th day CdCl2+ NaNO2
*
*
*
0
0,06
0,12
0,18
Brain Heart Liver
Control
14th day CdCl2+ NaNO2
14th day CdCl2+ NaNO2 & vitamins
*
*
*
0
0,06
0,12
0,18
Brain Heart Liver
Control
28th day CdCl2+ NaNO2

12 American Scientific Journal № ( 38) / 2020
діагностики хвороб тварин . К.: Аграрна освіта ;
2010 . [Levchenko VI , Golovaha V.I., Kondrahin I.P. ta
in. Metody laboratornoi' klinichnoi' diagnostyky
hvorob tvaryn . Kyi'v: Agrarna osvita; 2010 . (In Ukr) .]
4. Майборода Р. Комп ’ютерна статистика –
професійний старт. К .: ВПЦ “Київський
університет” ; 2018 . [Majboroda R. Komp’ju terna
statystyka – profesijnyj start. Kyi'v : VPC “Kyi'vs'kyj
universytet” ; 2018 . (In Ukr).]
5. Мельничук Д.О., Мельничук С.Д.,
Калачнюк Л.Г., та ін. Біохімія: практикум . К.:
НУБіП України ; 2012 . [Mel'nychuk DO , Mel'nychuk
SD , Kalachnjuk LG ta in . Biohimija: praktykum . Kyi'v :
NUBiP Ukrai'ny ; 2012 . (In Ukr).]
6. Скляров О. Я., Фартушок Н. В., Сойка Л.
Д., та ін. Біологічна хімія з біохімічними методами
дослідження: підручник. К.: Медицина ; 2009 .
[Skljarov OJa , Fartushok NV, Sojka LD , ta in.
Biologichna himija z bio himichnymy metodamy
doslidzhennja: pidruchnyk. Kyi'v: Medycyna ; 2009 . (In
Ukr).]
7. Рыболовлев Ю.Р., Рыболовлев Р.С.
Дозирование веществ для млекопитающих по
константе биологической активности // Журнал
АМН СССР. 1979. №6 (247 ). С. 1513 —1516.
[Rybolovlev JuR, Rybolovlev RS Dozirovanie
veshhestv dlja mlekopitajushhih po konstante
biologicheskoj aktivnosti . Zhurnal AMN SSSR.
1979 ;247 (6):1513 —1516 . (In Russ) .]
8. Скальный А .В. Биоэлементы в медицине .
М.: Издательский дом «ОНИКС 21 век »: Мир ; 2004 .
[Skal'nyj AV Biojel ementy v medicine . Moscow :
Izdatel'skij dom «ONIKS 21vek»: Mir ; 2004 . (In
Russ) .]
9. Трахтенберг И.М. Проблемы нормы в
токсикологии: современные представления и
методические подходы, основные параметры и
константы. М .: “Медицина ”; 1991 . [Trahtenberg
Y.M. Prob lemyy normyy v toksykologyy:
sovremennyye predstavlenyja y metodycheskye
podhodyy, osnovnyye parametryy y konstantyy.
Moskva: “Medycyna” ; 1991 . (In Russ).]
10. Храпак В.В. Механізми токсичних гіпоксій
та роль антидотів у їх профілактиці і лікуванні °//
Сучасні проблеми токсикології . 1998 . №3 . C . 43 -54.
[Hrapak VV Mehanizmy toksychnyh gipoksij ta rol'
antydotiv u i'h profilaktyci i likuvanni. Suchasni
problemy toksykologii'. 1998 ;(3):43-54 . (In Ukr) .]
11. Danilovich , G.V., Gruzina , T.G., Ulberg ,
Z.R., Kosterin , S.O., 2004 . Identification and catalytic
properties of Mg 2+- dependent ATP -hydrolase of
plasmic membrane of Bacillus sp. B4253 capable to
gold accumulation [ Іdentif іkac іja ta katal іtichn і
vlastivost і Mg 2+-zalezhnoi ATF -gіdrolazi
citoplazmatichnoi membrani Bacil lus sp. B4253,
zdatnih do nakopichennja zolota]. Ukr. Biochem. J.
76(5), 45 –51 (in Ukraini an). ]
12. Ansari MN , Ganaie MA , Rehman NU ,
Alharthy KM , Khan TH , et al. Protective role of
Roflumilast against cadmium -induced cardiotoxicity
through inhibition of oxidative stress and NF -κB
signaling in rats. Saudi Pharm J. 2019 Jul;27(5):673 -
681.
13. Berardo A , Maere HDe , Stavropoulou D.A , at
all. Effect of sodium ascorbate and sodium nitrite on
protein and lipid oxidation in dry fermented sausages.
Meat Science, Volume 121 , November 2016 , Pages
359 -364 .
14. Hsie h A , Feric NT , Radisic M . Combined
hypoxia an d sodium nitrite pretreatment for
cardiomyocyte protection in vitro. Biotechnol Prog.
2015 Mar -Apr;31(2):482 -492.
15. Iwona Markiewicz -Górka, Krystyna Pawlas,
Aleksandra Jaremków, Lidia Januszewska,Paweł
Pawłowski and Natalia Pawlas . Alleviating E_ect of _ -
Lipoic Acid and Magnesium on Cadmium -Induced
Inflammatory Processes, Oxidative Stress and Bone
Metabolism Disorders in Wistar Rats . Int. J. Environ.
Res. Public Health 2019 , 16, 4483 -4508 ;
doi:10.3390/ijerph16224483 .
16. Wawrzyniak A , Kieres R , Gronowska -Senger
A The in vitro effect of ascorbic acid on sodium nitrite
intoxicati on. Rocz Panstw Zakl Hig. 1997 ;48(3):245 -
52.