EXPERIMENTAL DETERMINATION OF THE THICKNESS OF THE SURFACE LAYER IN THE PHYSICS OF NANOSTRUCTURES (32-36)

EXPERIMENTAL DETERMINATION OF THE THICKNESS OF THE SURFACE LAYER IN THE PHYSICS OF NANOSTRUCTURES (32-36)

Выбор валюты
Дата публикации статьи в журнале: 2020/08/10
Название журнала: Американский Научный Журнал, Выпуск: 39, Том: 2, Страницы в выпуске: 32-36
Автор:
, Karaganda State University. named after E.A Buketov ,
Автор:
, ,
Автор:
, ,
Анотация: Atomically smooth surfaces of solids, especially semiconductors, are urgently needed to study the fundamental nature of surface phenomena. They are also needed in the manufacture of modern semiconductor devices. It is believed that only on atomically smooth surfaces can nanostructures be created that undergo crystal self-organization during crystal growth. In this paper, we consider methods for experimental determination of the thickness of the surface layer, surface tension, and the melting temperature of nanostructures of dielectrics, magnetic materials, metals, and alloys. The X-ray luminescence intensity of dielectrics was determined by the standard photoelectric method. Specific magnetization was measured using a vibrating magnetometer. The electrical conductivity of a metal or alloy film was determined using a standard three-electrode circuit. The use of Patents and utility model descriptions for patents provides simple formulas for calculating or experimentally determining the thickness of the surface layer, surface tension and the melting temperature of American Scientific Journal № (39) / 2020 33 nanostructures of dielectrics, magnetic materials, metals and alloys. The experimental determination of these values will allow you to control the technological processes of obtaining nanomaterials from any materials with desired properties.
Ключевые слова: Surface tension  surface layer thickness  size effect  melting point  nanostructure            
DOI:
Данные для цитирования: Yurov V.M. . EXPERIMENTAL DETERMINATION OF THE THICKNESS OF THE SURFACE LAYER IN THE PHYSICS OF NANOSTRUCTURES (32-36). Американский Научный Журнал. Физико-математические науки. 2020/08/10; 39(2):32-36.

Список литературы: 1.Li J., Schneider W.-D., Berndt R., Crampin S.. Electron confinement to nanoscale Ag islands on Ag(111): a quantitative study. // Phys. Rev. Lett. – 1998, V. 80. - P. 3332-3335. 2.Stipe B.C., Rezaei M.A., Ho W.. Inducing and viewing the rotational motion of a single molecule. // Sci. Rep., 1998, V. 279. - P. 1907-1909. 3.Kalff F.E., Rebergen M.P., Fahrenfort E., Girovsky J., Toskovic R., Lado J.L., Fernandez-Rossier J., Otte A.F. A kilobyte rewritable atomic memory. // Nat. Nanotechnol. Lett., 2016, V. 11. - P. 926-930. 4.Drost R., Ojanen T., Harju A., Liljeroth P. Topological states in engineered atomic lattices. // Nat. Phys. Lett., 2017, V. 13. - P. 668-672. 5.Karkare S., Bazarov I.. Effects of surface nonuniformities on the mean transverse energy from photocathodes. // Phys. Rev. Appl., 2015, V. 4. - P. 024015. 6.Teichert C. Self-organization of nanostructures in semiconductor heteroepitaxy. // Phys. Rep., 2002, V. 365. - P. 335-432. 7.Xu F., Huang P.W., Huang J.H., Lee W.N., Chin T.S., Ku H.C., Du Y.W.. Self-assembly and magnetic properties of MnAs nanowires on GaAs(001) substrate. // J. Appl. Phys., 2010, V. 107. - P. 063909. 8.Odinokova E.V., Panfilov Yu.V., Yurchenko P.I. Prospects for obtaining nanometer surface roughness by the ion beam method. // Engineering Journal: Science and Innovation, 2013, no. 6. URL: http://engjournal.ru/catalog/nano/hidden/801.html. 9.Zakharov P.V., Korznikova E.A., Dmitriev S.V. Discrete breathers near the surface of the Pt3Al intermetallic alloy // Materials Physics and Mechanics, 2017, V. 33. - P. 69-79. 10.Kazantsev D.M. Modeling of processes of thermal smoothing and disordering of the surface of semiconductors. - Diss. Candidate Phys.-Math. Sciences, Novosibirsk, 2018 .-- 112 p. 11.Yurov V.M. The thickness of the surface layer of atomically smooth crystals // Physicochemical aspects of the study of clusters, nanostructures and nanomaterials, 2019, Vol. 11. - P. 389-397. 12.Yurov V.M. The inverse Hall-Petch effect in atomically smooth metals // LXVI International Scientific Readings (in memory of L.D. Landau): a collection of articles at the International Scientific and Practical Conference (Moscow, 02.22.2020). - Moscow: EFIR, 2020. - P. 17-22. 13.Oura K., Lifshits V.G., Saranin A.A., Zotov A.V., Katayama M. .. Introduction to surface physics. M .: Nauka, 2006. - 490 p. 14.Yurov V.M., Portnov V.S., Puzeeva M.P. A method of measuring surface tension and density of surface states of dielectrics. Pat. 58155, Republic of Kazakhstan, publ. 12/15/2008, Bull. Number 12. 15.Yurov V.M., Guchenko S.A., Laurinas V.Ch., Zavatskaya O.N. Method for measuring the thickness of the surface layer of dielectrics // Description of the utility model for the patent, No. 3748, Publ. 03/07/2019, bull. No. 10. 16.Yurov V.M., Guchenko S.A., Laurinas V.Ch., Zavatskaya O.N. A method for determining the melting temperature of dielectric nanoparticles // Description of the utility model for the patent, No. 3749, Publ. 03/07/2019, bull. Number 10. 17.Yurov V.M., Portnov V.S., Puzeeva M.P. A method of measuring the surface tension of magnetic materials. Pat. 58158 Republic of Kazakhstan. Publ. 12/15/2008, Bull. Number 12. 18.Yurov V.M., Guchenko S.A., Laurinas V.Ch. A method of measuring the thickness of the surface layer of magnetic materials // Description of the utility model for the patent, No. 3747, Publ. 03/07/2019, bull. No. 10. 19.Yurov V.M., Guchenko S.A., Ibraev N.Kh. A method of measuring the surface tension of deposited coatings. Pat. 66095 Republic of Kazakhstan, publ. 11/15/2010, Bull. Number 11. 20.Yurov V.M., Guchenko S.A., Laurinas V.Ch. The method of measuring the thickness of the surface layer of metals and alloys // Description of the utility model for the patent, No. 3751, Publ. 03/07/2019, bull. No. 10. 21.Yurov V.M., Guchenko S.A., Laurinas V.Ch., Zavatskaya O.N. A method for determining the melting temperature of nanoparticles of metals and alloys // Description of the utility model for the patent, No. 3750, Publ. 03/07/2019, bull. Number 10. 22.Surin Yu.V., Shimko V.N., Matveev V.V. Non-contact method for measuring the resistivity of wafers of semiconductors and epitaxial layers // Zavodskaya Lab, 1966, v.32, No. 9. - P.1086-1088. 23.Buffat Ph., Borel J.-P. Size effect on the melting temperature of gold particles // Phys. Rev. A, 1976, V.13, №6. – P. 2287-2298.