ON THE TENSION OF A CYLINDRICAL ROD OF VARIABLE CROSS-SECTION (41-47)
Дата публикации статьи в журнале: 2020/05/14
Название журнала: Американский Научный Журнал, Выпуск: 36, Том: 1, Страницы в выпуске: 41-47
Автор:
45 Moskovsky Prospekt, Cheboksary, Russia, , Department of general physics, Chuvash State University
45 Moskovsky Prospekt, Cheboksary, Russia, , Department of general physics, Chuvash State University
Анотация: The theory of small elastoplastic deformations is widespread in the field of structural analysis. In this paper consider the stretching of an in_nitely long cylindrical rod of variable cross-section. The results of solving the linearized equations of the theory of small elastic-plastic deformations [1-7] in the case of an axisymmetric problem are used. It is assumed that a simple stretch occurs in the initial state. In the first approximation, the relations for the components of displacements, deformations, and stresses are obtained. Solutions are expressed in terms of zero -and first-order Bessel functions.
Ключевые слова: stretching displacement deformation stress boundary conditions linearization Bessel function
DOI:
Данные для цитирования: Petrov N.I. . ON THE TENSION OF A CYLINDRICAL ROD OF VARIABLE CROSS-SECTION (41-47). Американский Научный Журнал. Физико-математические науки. 2020/05/14; 36(1):41-47.