ON THE TENSION OF A CYLINDRICAL ROD OF VARIABLE CROSS-SECTION (41-47)

ON THE TENSION OF A CYLINDRICAL ROD OF VARIABLE CROSS-SECTION (41-47)

Выбор валюты
Дата публикации статьи в журнале: 2020/05/14
Название журнала: Американский Научный Журнал, Выпуск: 36, Том: 1, Страницы в выпуске: 41-47
Автор:
45 Moskovsky Prospekt, Cheboksary, Russia, , Department of general physics, Chuvash State University
Автор:
, ,
Автор:
, ,
Анотация: The theory of small elastoplastic deformations is widespread in the field of structural analysis. In this paper consider the stretching of an in_nitely long cylindrical rod of variable cross-section. The results of solving the linearized equations of the theory of small elastic-plastic deformations [1-7] in the case of an axisymmetric problem are used. It is assumed that a simple stretch occurs in the initial state. In the first approximation, the relations for the components of displacements, deformations, and stresses are obtained. Solutions are expressed in terms of zero -and first-order Bessel functions.
Ключевые слова: stretching  displacement  deformation  stress  boundary  conditions  linearization  Bessel function      
DOI:
Данные для цитирования: Petrov N.I. . ON THE TENSION OF A CYLINDRICAL ROD OF VARIABLE CROSS-SECTION (41-47). Американский Научный Журнал. Физико-математические науки. 2020/05/14; 36(1):41-47.

Список литературы: [1] Ilyushin A. A. Plasticity. Moscow: Gostekhizdat, 1948. 376 p. (in Russian). [2] Ivlev D. D., Ershov L. V. Perturbation method in the theory of elastic-plastic body. Moscow: Nauka, 1978. 208 p. (in Russian). [3] Ishlinsky A. Y., Ivlev D. D. Mathematical theory of plasticity. Moscow: Fizmatlit, 2001. 704 p. (in Russian). [4] Ivlev D. D., Mikhailova M. V.,Petrov N. I. On Polynomial soluthions of the linearized equatons of the theory of small elastoplastic strains in polar coordinates. // Izvestia ITA ChR. 1996_1997. no. 3 (4)_2 (7) P. 64_69. (in Russian). [5] Petrov N. I. Polynomial soluthions of the linearized equatons of linearized problems of an axisymmetric state in the theory of small elastoplastic deformations. // Izvestia ITA ChR. 1996_1997. no. 3 (4)_2 (7). P. 70_71. (in Russian). [6] Petrov N. I. The solution of linearized problems of an axisymmetric state in the theory of small elastoplastic deformations in polynomials. // Materials of the international scienti_c-practical conference "Fundamental and Applied Research in the Field of Natural and Technical Sciences". Belgorod: Agency for Advanced Research (APNI), 2018. P. 28_30. (in Russian). [7] Petrov N. I. On the solution of linearized equations of the theory of small elastoplastic deformations in the case of an axisymmetric problem. // Bulletin of the Yakovlev Chuvash State Pedagogical University. 2019. no. 3 (14). P. 61_66. (in Russian).