QUANTUM TEORY OF SOLAR CORONA HEATING

QUANTUM TEORY OF SOLAR CORONA HEATING

Дата публикации статьи в журнале: 4.10.2019
Название журнала: Американский Научный Журнал, Выпуск: № (29) / 2019, Том: 2, Страницы в выпуске: 74-78
Автор:
Moscow, Space Research Institute, Russian Academy of Sciences, Cand. Sc. Physics
Автор: Chefranov Sergey
Moscow, Obukhov Institute of Atmospheric Physics, Russian Academy of Sciences, Dr. Sc. Physics
Автор:
, ,
Анотация:

Abstract. Data obtained in the framework of the INTERBALL-Tail Probe (1995–2000) and RHESSI (from
2002 to the present) projects have revealed variations in the X-ray intensity of the solar corona in the photon energy
range of 2−15 keV during the period of the quiet Sun. Previously, a hypothesis was proposed that this phenomenon
could be associated with the effect of coronal heating. In the present study, a new mechanism of coronal plasma
heating is proposed on the basis of the experimental data and the quantum theory of photon pairs that are produced
from vacuum in the course of the Universe’s expansion. A similar mechanism based on the splitting of photon
pairs in the interplanetary and intergalactic space is also proposed to explain the observed microwave background
radiation

Ключевые слова: photons  photons pairs   solar corona   coronal plasma heating              
DOI:
Данные для цитирования: Mirzoeva Irina Chefranov Sergey . QUANTUM TEORY OF SOLAR CORONA HEATING. Американский Научный Журнал. Физико-математические науки. 4.10.2019; № (29) / 2019(2):74-78.

View Fullscreen
Список литературы: References 1. Mirzoeva IK (2005) Energy spectrum of the time profiles for weak solar soft X-ray bursts. Astron Lett 31: 57-63 2. Mirzoeva IK (2013) Reduction in the intensity of solar X-ray emission in the 2- to 15-keV photon energy range and heating of the solar corona. Plasma Phys Rep 39: 316-326 3. Mirzoeva IK (2018) Small-Scale Structure of Thermal X-Ray Background of the Solar Corona and Microflares in the Photon Energy Range of 3-16 keV. Plasma Phys Rep 44: 92-101 4. Ringwald A (2012) Exploring the Role of Axions and Other WISPs in the Dark Universe. Phys Dark Univ 1: 116–135 5. Ringwald A (2013) Ultralight Particle Dark Matter. 25th Rencontres de Blois on Particle Physics and Cosmology Blois. France May 26-31: arXiv:1310.1256 6. http://cast.web.cern.ch/CAST 7. Barth K, Belov A, Beltran B (2013) CAST constraints on theaxion-electron coupling. Journal of Cosmology and Astroparticle Physics 5: 10-20 8. Iguaz FJ on behalf of the CAST Collaboration (2010) The CAST experiment: status and perspectives. 8th Symposium on Identification of Dark Matter 2010- IDM 2010 July 26-30: arXiv:1110.2116v1.pdf 9. Irastorza IG (2006) CERN Axion Solar Telescope (CAST). Symposium on Detector Developments for Particle Astroparticle and Synchrotron Radiation Experiments SLAC: 6-10 10. Fraser GW, Read AM, Sembay S, Carter JA, Schyns E (2014) Potential solar axion signatures in Xray observations with the XMM-Newton observatory https://arxiv.org/ftp/arxiv/papers/1403/1403.2436.pdf 11. Chefranov SG, Novikov EA (2010) Hydrodynamic vacuum sources of dark matter selfgeneration in accelerated universe without Big Bang. Journal of Experimental and Theoretical Physics 111 5: 731-743 12. Novikov EA (2006) Vacuum response to cosmic stretching: accelerated Universe and prevention of singularity https://arxiv.org/pdf/nlin/0608050.pdf 13. Gliner EB (1966) Algebraic properties of the energy-momentum tensor and vacuum-like states of matter. Sov Phys JETP 22: 378-383 14. Gliner EB (1970) The Vacuum-like State of a Medium and Friedman Cosmology. Soviet Physics Doklady 15: 559-561 15. Sakharov AD (1967) Vacuum quantum fluctuations in curved space and the theory of gravitation. Dokl Akad Nauk USSSR 177: 70–71 16. Starobinskii AA (1978) On a nonsingular isotropic cosmological model. Sov Astron Lett 4: 82- 84 17. Novikov EA (2016) Ultralight gravitons with tiny electric dipole moment are seeping from the vacuum. Mod Phys Lett A 31 15: 1650092