Американский Научный Журнал TERNARY SYSTEM OF SODIUM, CAESIUM AND CALCIUM SULPHATES (54-60)

The aim of this paper is studying the fusibility diagram of a ternary system of sodium, cesium and calcium sulfates. Methods. The studies were conducted by differential thermal analysis (DTA) method; to build a liquidus surface we used visual polythermal analysis (VPA); X-ray diffraction analysis (XRDA) of the starting salts and the resulting compound was carried out on a DRON -2 diffractometer; phase relationships were studied using a synchronous thermal analyzer of a STA 409PC modification (thermal analyzer), manufactured by NETZSCH German company. Results. In the phase diagram, the nature and coordinates of invariant points (NVP) are revealed. The liquidus surface is represented by the crystallization fields of the starting components and binary compounds. Conclusions. Under the action of the third component, solid solutions formed on the double side of Na2SO4 − CaSO4 decompose. Скачать в формате PDF
54 American Scientific Journal № ( 37 ) / 2020
ХИМИЧЕСКИЕ НАУКИ

УДК 544.344.3

ТРОЙНАЯ СИСТЕМА ИЗ С УЛЬФАТОВ НАТРИЯ, ЦЕЗ ИЯ И КАЛЬЦИЯ

Гасаналиев А.М., Гаматаева Б.Ю.,
Гасаналиева П.Н., Гаматаев Т.Ш. , Амиров А.М.
Дагестанский государственный педагогический университет,
НИИ общей неорганической химии,
Аналитический центр коллективного пользования ДФИЦ РАН,
Махачкала , Россия

TERNARY SYSTEM OF SO DIUM, CAESIUM AND CA LCIUM SULPHATES

Abdulla M. Gasanaliev, Bariyat Yu. Gamataeva,
Patimat N. Gasanalieva, Timur Sh. Gamataev
Akhme d M. Amirov
Dagestan State Pedagogical University,
Institute of General Inorganic Chemistry,
Collrctive Analytical Center
Makhachkala, Russia

Резюме . Целью данной работы является изучение диаграммы плавкости тройной системы из
сульфатов натрия , цезия и кальция . Методы. Исследования проведены методом дифференциального
термического анализа (ДТА); для построения поверхности ликвидуса использовали визуально –
по литермический анализ (ВПА); рентгенофазовый анализ (РФА) исходных солей и образующихся
соединении пр оводили на дифрактометре ДРОН -2; изучение фазовых взаимоотношений проведено на
установке синхронного термического анализатора, модификации STA 409PC (термоа нализатор),
выпущенного германской фирмой «NETZSCH». Результаты. В фазовой диаграмме выявлены характ ер и
координаты нонвариантных точек (НВТ). Поверхность ликвидуса представлена полями кристаллизации
исходных компонентов и бинарных соединений. Выводы. Под действием третьего компонента твердые
растворы образованные на двойной стороне Na 2SO 4−CaSO 4 распадаются.
Abstract . The aim of this paper is studying the fusibility diagram of a ternary system of sodium, cesium and
calcium sulfates. Methods . The studies wer e conducted by differential thermal analysis (DTA) method; to build a
liquidus surface we u sed visual polythermal analysis (VPA); X -ray diffraction analysis (XRDA) of the starting
salts and the resulting compound was carried out on a DRON -2 diffractometer ; phase relationships were studied
using a synchronous thermal analyzer of a STA 409PC modi fication (thermal analyzer), manufactured by
NETZSCH German company. Results. In the phase diagram, the nature and coordinates of invariant points (NVP)
are revealed . The liquidus surface is represented by the crystallization fields of the starting compone nts and binary
compounds. Conclusions. Under the action of the third component, solid solutions formed on the double side of
Na 2SO 4−CaSO 4 decompose.
Ключевые слова: эвтектика, перитектика, сульфаты, твердые растворы, фазовое равновесие,
дистектика , диаграмма, конгруэнтноплавящееся соединение.
Keywords: eutectics, peritectics, sulfates, solid solutions, phase equilibrium, dystectics, diagram,
congruently melting compou nd.

THEORETICAL ANALYSIS
In the modern scientific and technical process, the
sea rch and creation of new materials is the main
condition. Phase diagrams are the theoretical basis for
creating new materials. In this paper, we conduct a final
study of the behavior of solid solutions based on
Sodium and Calcium sulfates under the action o f the
third component, in particular, alkaline and alkaline
earth metal sulfates. Unlike other melts, sulfates of
alkaline and alkaline earth metals are available, cost -
effective, and have a high visco sity, density, and
melting point, which is promising fo r the development
of new high -temperature lubricants and fluxes [4, 19].
The development of fundamental and applied scientific
research, the creation of high -temperature materials
based on them, and th e improvement of their
production technology require co mplex development.
Salt compositions based on sulphates of alkaline and
alkaline earth metals are widely used in many areas of
industry. They have high thermal stability and lack of
smoke in the temper ature range up to 1200°C, which
are caused by heating t he metal under rolling [5, 14].
Sulphate melts in combination with other salts
(phosphates, borates, etc.) form alloys that meet the
highest requirements for lubricants.
EXPERIMENTAL PART
The research was carried out on a standard DTA
unit [5, 1, 12]. The temperature meters were Pt -Pt / Ru
thermocouples. To record the heating and cooling

American Scientifi c Journal № ( 37 ) / 2020 55

curves, an installation based on the KSP -4 automatic
potentiometer with a voltage meter F – 116/1 was used.
The unit was graded according to the temperatures
of phase trans itions of individual salts and eutectic
mixtures [2]. The melting points of the initial salts
corresponded to the reference data [16]. All
compositions are expressed in mol. %, temperatures in 0C. The indifferent substance was AR marked freshly
incinerated Al2O3.
Two -component Na 2SO 4−CaSO 4 systems was
studied earlier [15, 20, 13]. Before investigating the
ternary system, we rechecked the data on melting
temperatures and the composition of double eutecti cs
and dystectics (D), deposited on the compos ition
triangle (Fig. 1).
A visual polythermal method was used to
construct the liquidus surface [3]. X -ray diffraction
analysis on a DRON -2.0 diffractometer (CuKα -
radiation = 0.154 nm, Ni -filter) was used to c heck the
initial salts and the resulting compo unds [11].
Compositions for XRDA were observed at a
temperature of 150 -200ºC during 400 hours with
subsequent quenching. The phase compositions were
identified using the Giller’s table [8].
To clarify the melti ng temperature and
composition of non -invarian t points (NVP), the method
of differential thermal analysis was used on the unit of
a synchronous thermal analyzer of the STA 409 PC
Luxx modification of the "Netsch" company. The
research was carried out at a heating and cooling rate of
7 degrees/min in t he helium atmosphere.
Two -component systems
Na 2SO 4−CaSO 4 system had been studied by
many authors [15, 20].
Limited solid solutions are formed in the system at
a maximum of 0.46 C at 47.5% ��� 4. With furthe r
addition of calcium sulfate, the liquidus curve is
lowered to the eutectics of 908 °C at 47.5% ��� 4.
Na 2SO 4−CaSO 4 system was rechecked by us.
According to the results of studies using DTA and
XRDA (Fig. 1, 2.), a 1:1 congruent melting compound
is fo rmed in the system wit h a peritectics of P 678 ° C
and 51% ��� 4.
The system of the eutectic type ℇ 775 ° C and 40%
� 2�� 4.



Fig. 1. The state diagram of the system of sodium and caesium sulfates
�� 2�� 4 � 2�� 4

56 American Scientific Journal № ( 37 ) / 2020
Fig. 2. The bar X -ray chart of the �� 2�� 4−�2�� 4 system
�� 2�� 4−� 2�� 4−��� 4 ternary system

To construct the liquidus surface of the system, we
studied 13 internal sections. As can be seen on figure 3,
the liquidus surface consists of fields of initial
components and new phases. This system characteristic
is the decomposition of the solid solutio ns on the basis
of �� 2�� 4−� 2�� 4 formed on the double side. The
decay curve of solid solutions is wedged at the
transition point R 588 ° C. The table sh ows the non -
invariant points of the system.
Table.
Nonvariant points of the � , , //� ���
Character of points Designation
t ºC Composition in %
The equilibrium phases
�� 2�� 4 � �� 4 � 2�� 4
Perite ctics
�1 626 27 23 50 ��� 4,� 2�� 4
�� 2� , (�� 4)2
�2 630 45 6 49
� 2�� 4,
2� 2�� 4∙�� 2�� 4,
� 2�� 4∙�� 2�� 4
Eutectics E 562 40 17 43
� 2�� 4,
�� 2�� 4∙� 2�� 4
�� 2�� 4∙� �� 4
Pinch R 588 50 19 31 �� 2�� 4∙� 2�� 4,
�� 2�� 4∙� �� 4

Figure 3 shows the double systems and internal
sections that allowed us to delineate the liquidus
surface of the syst em.

American Scientifi c Journal № ( 37 ) / 2020 57


Fig. 3. Diagram of the fusibility and location of sections in
�� 2�� 4−� 2�� 4−��� 4�����

The liquidus surface projection of �� 2�� 4−
� 2�� 4−а�� 4 ternary system o n �� 2�� 4−� 2�� 4
double side helped to determine the temperatures of
nonvariant points and the isotherm control points (fig.
4, 5). As one can see, the isotherms on all fields are flat,
which indicates a uniform temperature decrease.

Fig. 4. La teral sides and internal sections of
�� 2�� 4−� 2�� 4−��� 4 triple system
1450°
1010

58 American Scientific Journal № ( 37 ) / 2020
Fig. 5. The crystallization polytherm projection of �� 2�� 4−� 2�� 4−��� 4 triple system on
�� 2�� 4−� 2�� 4 double si de

RESULTS AND DISCUSSION
As shown by our studies [3, 19, 20] solid solutions
on the basis of �� 2�� 4−� �� 4 under the influence of
the third component dissimilate in some cases , while
in the others they do not. To analyze the stability of
solid solutions, we used the Goldschmidt’s equation
[9].
� = ��+(1∙�)�2
where m is one component fraction
M is metal.
Assuming in the Goldschmidt’s formula the ion
charge equal to one, we calculated the value of the
cation force fields.
�= 1,64 ; �� = 1,04 ; �= 0,65 ; �� =
0,448 ; � = 0,861 , = 0,366 .
Then, as a real test, we calculated the total value
of the force field for the composition of 20% ��� 4−
80% �� 2�� 4 dual system.
Next, we calculated the ratio of the equivalent
force fiel d of cations of the selected composition to the
ratio of the force fields of the third component for all
ternary systems.
� = �
� = 0,923
1,64 = 0,56 ;�,�� ,� ||�� 4
� = �
� = 0,923
0,565 = 1,26 ;�,�� ,� ||�� 4
� = �
�� = 0,923
0,448 = 2,05 ;�� ,�� ,� ||�� 4
� = �
= 0,923
0,366 = 2,22 ;� ,�� ,� ||�� 4
CONCLUSION
The calculated and experimental data showed that
if the ratio of fields to the ion charge is greater than two,
the solid solutions dissimilate inside the system, while
if the value is less than two, the double solid solutions
do not dissimilate. They are stable.
It is currently difficult to judge o n the universality
of this technique, but the analysis of a large
experimental material based on the result s of studies of
both ternary systems and ternary mutual ones for phase
equilibria and calculations for ion radii indicate the
qualitative convergence of calculations with the
experimental results.

Литература
1. Берг А.Г. Введение в термографию. М.:
Наука, 19 61.
2. Берг Л.Г. Введение в термографию. Изд. 2 -
е доп. М.: Наука, 1969. 395с.

American Scientifi c Journal № ( 37 ) / 2020 59

3. Бергман А.Г. Политермический метод
изучения сложных соляных систем. Труды IV
Менделевского съезда по термической и
прикладной химии. Харьков – Киев: ГНТИ, 135. Т.
2. № 1. С. 631 -637.
4. Гасаналиев А.М., Гаркулин И.К., Дибиров
М.А., Трунин А.С. Применение расплавов в
современной науке и технике // Махачкала,
2011.156с.
5. Гасаналиев А .М. Дисс. на соискание к.х.н.
Ростов - на-Дону, 1970. 197с.
6. Гасаналиев А.М., Гаматаеав Б.Ю.,
Гасаналиева П.Н., Гаматаев Т. Ш., Маглаев Д.З.
Фазовые равновесия в системе Na , K, Ca //SO 4.
Известия Дагестанского государственного
педагогического университета. Ес тественные и
точные науки. 2016. № 2. С. 6 -10.
7. Гасаналиев А .М., Гаматаева Б.Ю.,
Гасаналиева П.Н., Гаматаев Т.Ш. Тройная взаимная
система из хлоридов и сульфатов натрия и кальция.
Известия Дагестанского государственного
педагогического университета. Естеств енные и
точные науки. 2017. № 3.С. 20 -27.
8. Гиллер Р.А. Табли ца межплоскостных
расстоянии. М.: Наука,1966. Т2. 362с.
9. Гольдшмидт В.М. Большая советская
энциклопедия (в 30 Т). М.: Советская
энциклопедия, 1969 -1979.
10. ГОСТ 6563 -75 -2009. Изделия технические
из бл агородных металлов и сплавов. Технические
условия (с измене ниями №1,2,3)М.:.
Стандартинформ, 2009.
11. Ковба Л.М., Трунов В.К. Рентгеновский
анализ. Изд -е 2 -е, доп. и перераб. М.: МГУ, 1976.
232с.
12. Машенский Ю.В. Приборы и техника
эксперимента. 2003, № 6. 123 с .
13. Посыпайко В.И., Алексеева Е.А., Васина
Н.А. Диаграммы пла вкости солевых систем. Ч. 1.
Двойные системы с общим анионом. М.:
Металлургия, 1977. 415с.
14. Селиванова Н.М. Дисс. на соискание д.х.н.
Казань: КНИТУ, 2014.
15. Сперанская Е.И., Барская И.Б. Курс
неоргани ческой химии. Т. 1, 845с.
16. Термические константы веществ.
Сп равочник / Под ред. Глушкова В.П. М.:
ВИНИТИ, 1981, Вып. X. Ч. 1. 300с.
17. Термические константы веществ.
Справочник / Под ред. Глушкова В.П. М.:
ВИНИТИ, 1981, Вып. X. Ч. 2. 300с.
18. Федеров П.П., Прайд акова В.Ю., Кузнецов
С.В., Воронов В.В. Фазовые равновесия в системах
сульфата галлия с сульфатами лития и натрия//
Журнал неорганической химии. 2017. Т. 62. № 11 .
С. 1521 -1524.
19. Gasanaliev A.M., Gamataeva B. Yu.,
Gasanalieva P.N., GamataebT.Sh., Trunin A.S .
Behavior and nature of disintegration of slid solution
based on sodium and calcium Silphates in
termarysilphatessistems. Periodicotcheguimica. Vol. 4.
№ 27.2017. Porto Alegre. RS Brasil. P. 123 - 130.
20. Miller H., Heues Jahb. Mineral. Peneltol Band
30.1 (1 910) .

References
1. Berg A.G. Introduction to thermography.
Moscow, Nauka, 1961. (In Russian)
2. Berg L.G. Introduction to thermography. Ed.
2nd add. Moscow, Nauka, 1969. 395 р. (In Russian)
3. Bergman A.G. Polythermal method for the
study of complex sal t systems. Proceed ings of the IV
Mendelev Congress on thermal and applied chemistry.
Kharkov - Kiev: SSTI, 135. Vol. 2. No. 1. Рp. 631 -637.
(In Russian)
4. Gasanaliev A.M., Garkulin I.K., Dibirov M.A.,
Trunin A.S. The use of melts in modern science and
tec hnology. Makhachka la, 2011.156 р. (In Russian)
5. Gasanaliev A.M. Diss. for the Ph. D. in
Chemistry. Rostov -on -Don, 1970. (In Russian)
6. Gasanaliev A.M., Gamataeva B.Yu.,
Gasanalieva P.N., Gamataev T. Sh., Maglaev D.Z.
Phase equilibria in the Na, K, Ca // SO 4 system.
Proce edings of Dagestan State Pedagogical University.
Natural and Exact Sciences. 2016. No. 2. Pp. 6 -10. (In
Russian)
7. Gasanaliev A.M., Gamataeva B.Yu.,
Gasanalieva P.N., Gamataev T.Sh. Triple mutual
system of chlorides and sulfates of sodi um and calcium.
Proceedings of Dagestan State Pedagogical University.
Natural and Exact Sciences. 2017. No. 3. Рp. 20 -27. (In
Russian)
8. Giller R.A. Interplanar spacing table. Moscow,
Nauka, 1966. Vol. 2. 362 р.
9. Goldschmidt V.M. Great Soviet Encyclopedi a
(30 T). Moscow, Soviet Encyclopedia, 1969 -1979. (In
Russian)
10. All -Union State Standard 6563 -75 -2009.
Technical products made of precious metals and alloys.
Specifications (with amendments No. 1, 2, 3) Moscow,
Standartinform, 2009. (In Russian)
11. Ko vba L.M., Trunov V .K. X -ray analysis. 2nd
ed. and reworked. Moscow, Moscow State University,
1976. 232 р. (In Russian)
12. Mashensky Yu.V. Instruments and
experimental technique. 2003, No. 6. 123 p.
13. Posypayko V.I., Alekseeva E.A., Vasina N.A.
Charts of fusibility of salt systems. Part 1. Binary
systems with a common anion. Moscow, Metallurgy,
1977. 415 р. (In Russian)
14. Selivanova N.M. Diss. for the Ph. D. Kazan,
KSITU, 2014. (In Russian)
15. Speranskaya E.I., Barskaya I.B. Inorganic
chemistry course. V ol. 1, 845 р. (In R ussian)
16. Thermal constants of substances. Handbook /
Ed. Glushkova V.P. M .: VINITI, 1981, Issue X. Рart
1. 300 р. (In Russian)
17. Thermal constants of substances. Handbook /
Ed. Glushkova V.P. M .: VINITI, 1981, Issue. X. Рart
2. 30 0 р. (In Russian)
18. Federov P.P., Priydakova V.Yu., Kuznetsov
S.V., Voronov V.V. Phase equilibria in gallium sulfate
systems with lithium and sodium sulfates // Journal of
Inorganic Chemistry. 2017.V. 62. No. 11. Pp. 1521 -
1524. (In Russian)

60 American Scientific Journal № ( 37 ) / 2020
19. Gasanalie v A.M., G amataeva B. Yu.,
Gasanalieva P.N., GamataebT.Sh., Trunin A.S.
Behavior and nature of disintegration of slid solution
based on sodium and calcium Sulphates in ternary
sulphate systems. Periodicotcheguimica. Vol. 4. No.
27. 2017. Porto Alegre. RS Br asil. Pp. 123 -130.
20. Miller H., Heues Jahb. Mineral Peneltol Band
30.1 (1910).

СВЕДЕНИЯ ОБ АВТОРАХ
Принадлежность к организации
Гасаналиев Абдулла Магомедович, доктор
химических наук, профессор кафедры химии,
факультет биологии, географии и химии (ФБГХ) ,
ДГПУ, М ахачкала, Россия;
Гаматаева Барият Юнусовна, доктор
химических наук, профессор, заведующая
кафедрой химии, ФБГХ, ДГПУ, Махачкала,
Россия;
Гасаналиева Патимат Насирдиновна ,
доцент кафедры химии, ФБГХ, ДГПУ, Махачкала,
Россия;
Гаматаев Тимур Шейх ович , аспирант НИИ
общей и неорганической химии ДГПУ, Махачкала,
Россия
Амиров Ахмед Магомедович , научный
сотрудник Аналитического центра коллективного
пользования ДФИЦ РАН, Махачка ла, Россия

INFORMATION ABOUT THE AUTHORS
Affiliations
Abdulla M. Gasanalie v, Doctor of Chemistry,
professor, the chair of Chemistry, Faculty of Biology,
Geography and Chemistry (FBGH) , Dagestan State
Pedagogical University (DSPU), Makhachkala, Russia;
abdulla.
Bariyat Yu. Gamataeva, Doctor of Chemistry,
professor, the head of th e chair of Chemistry, FBGH ,
DSPU, Makhachkala, Russia;
Patimat N. Gasanalieva, Associate Professor of
the Department of Chemistry, FBGH, DSPU,
Makhachkala, Russia;
Timu r Sh. Gamataev, post -graduate student of
the Institute of General and Inorganic Chemis try of the
DSPU, Makhachkala, Russia
Akhmed M. Amirov, researcher, Analytical
center for collective use, DFRC, Russian Academy of
Sciences, Russian multiple -access analytical cente r of
the Russian Academy of Sciences, Makhachkala,
Russia