PREDICTION OF THE CONDITIONS FOR THE CLIMATE CHANGES, ON THE BASIS OF PHYSICOCHEMICAL MODELLING

PREDICTION OF THE CONDITIONS FOR THE CLIMATE CHANGES, ON THE BASIS OF PHYSICOCHEMICAL MODELLING

Дата публикации статьи в журнале: 11.09.2019
Название журнала: Американский Научный Журнал, Выпуск: № (28) / 2019, Том: 1, Страницы в выпуске: 18-25
Автор:
, Institute of Earth’s Crust SB PAS,
Автор:
, ,
Автор:
, ,
Анотация:

deling of greenhouse gas emissions into the atmosphere from natural and anthropogenic sources has allowed
us the new, in contrast to previous research, to approach the solution to this problem and skorrekti –rovt equity
contribution of the main gases in global warming. A thermodynamic simulation of the emission of carbon,
methane, nitrous oxide, and chlorofluorocarbon in the surface layer of the atmosphere has been carried out up to
a height of 500 m at an average temperature of the Earth,
s surface of 150C and in lower layers of the troposphere
at a height of up to 2 km at a temperature of 30C and corresponding pressures of 1013.25 and 790 hPa. It was
ascertained that the planetary temperature might rise to 18.150C by 2100 with an increase in the CO2 concentration
by two times in the surface atmosphere; with allowance for the additional contribution of CH4, to 19.420C; with
allowance for N2O, to 20.080C; and with allowance for all gasses put together, including chlorofluorocarbons and
water vapor, to 22.680C. In the lower troposphere, with an increase in CO2, the temperature might rise to 4.630C;
with an additional contribution of CH4, to 5.830 C ;with allowance for N2O, to 6.500C; and with allowance for all
gases, including chlorofluorocarbons and water vapor, to 7.910C.

Ключевые слова: Prediction   thermodynamic model  Climate  change   greenhouse gases  atmosphere          
DOI:
Данные для цитирования: Skvortsov V.A . PREDICTION OF THE CONDITIONS FOR THE CLIMATE CHANGES, ON THE BASIS OF PHYSICOCHEMICAL MODELLING. Американский Научный Журнал. Науки о Земле. 11.09.2019; № (28) / 2019(1):18-25.

View Fullscreen
Список литературы: References 1. Bazhin N.M. Methane in the atmosphere.- Soros Educational Journal, 2000, V. 6, № 3, p. 52-57. 2. Belan B.D. Tropospheric ozone 7. Ozone sinks in the troposphere. – Optika atmosfery i okeana, 2010, V. 23, № 2, p. 108-127. 3. Belan B.D. Ozone in the troposphere. – Tomsk: IAO SB RAS Publ., 2010, 488 p. 4. Borisenkov E.P. Climate and climate changes. - L.: Znanie. Physics Ser., 1976, № 6, 64 p. 5. Borisenkov E.P., Kondrat’ev K.Ya. Carbon cycle and climate. - L.: Gidrometeoizdat, 1988, 320 p. 6. Budyko M.I. Climate changes. – L.: Gidrometeoizdat, 1974, 280 p. 7. Golubyatnikov L.L., Mokhov I.I., Eliseev A.V. Cycle of nitrogen in the Earth climate system and its modelling.- Izv. RAN. Fizika atmosfery i okeana, 2013, V. 49, № 3, p. 255-270. 8. Dzyuba A.V., Eliseev A.V., Mokhov I.I. Assessment of the rates of methane removal from the atmosphere under climate warming.- Izv. RAN. Fizika atmosfery i okeana, 2012, V. 6, № 3, p. 52-57. 9. Climate change: The IPCC 1990 and 1992 Assessments. - IPCC, Canada, 1992, 168 p. 10. Climate change, 2001. The scientific basis. – Cambridge Publ., 2001, 109 p. 11. Karol’ I.L., Kiselev A.A. Atmospheric methane and global climate.- Priroda, 2004, № 7, p. 47- 52. 12. Karol’ I.L., Reshetnikov A.I., Makhotkina A.L., Paramonova N.N., Pokrovskii O.M. Changes in the greenhouse gases and the aerosol content in the atmosphere and their influence on the climate.- Assessment report on the climate changes and their consequences at the territory of Russian Federation. V. 1. Climate changes. - M.: Rosgidromet, 2008, p. 88- 111. 13. Karpov I.K. Physicochemical modelling on ECMs in geochemistry.- Novosibirsk: Nauka, Syberian Branch,- 1981, 247 p. 14. Kislov A.V. Climate theory.- M.: MSU Publ., 1989, 148 p. 15. Kislov V.A. Climate in the past, in the present, and in the future.- M.: MAIK «Nauka» Intermetodika, 2001, 351 p. 16. Kovi K. Earth’s orbit and glacial epochs.- V mire nauki, 1984, № 4, p. 26-35. 17. Kondrat’ev K.Ya., Pozdnyakov D.V. Aerosol model of the atmosphere.- M.: Nauka,- 1981, 104 p. 18. Larin I.K. Chemistry of the greenhouse effect.- Khimiya i zhizn’, 2001, № 7, p. 46-51. 19. Marchuk G.I. Modelling the climate changes and the issues of long-term weather forecasting. -Meteorologiya i gidrologiya, 1979, № 7, p. 25-36. 20. Foundations of natural resource management: ecological, economic, and legal issues: textbook /A.B. Vorob’ev [et al.]; ed. by Prof. V.V. D’yachenko. 2nd edition, revised and expanded. Rostov-on-Don: Feniks, 2007, 542 p. 21. Issues of measurement of the greenhouse gases in Russia.- ESKO Electronic journal of the energy service company «Ekologicheskie sistemy», 2002, № 10, p. 1-7. 22. Skvortsov V.A. Nanoecology – a new trend in studying of polydispersed aerosol systems.- DAN, 2012, V. 444, № 2, P.194-197. 23. Skvortsov V.A., Chudnenko K.V. Thermodynamic model of the greenhouse gases in the atmosphere and climate changes // Optika atmosfery i okeana. 2014. V. 27. № 9., p. 833-840. 24. IPCC Special Report. Emissions Scenarios, 2000, 27 p. 25. Physiographic Atlas of the World.- M.: the USSR Academy of Sciences and Chief Directorate of Geodesy and Cartography under the Council of Ministers of USSR, 1964, 298 p. 26. Chudnenko K.V. Thermodynamic modelling in geochemistry: algorithms, software, applications /ed. in chief V.N. Sharapov Rus. Acad. Sci., Sib. Br. – Novosibirsk, Academ. publ. “Geo”, 2010, 287 p. 27. Inadvertent climate modification.- The MIT Press. Cambridge Massachusetts, 1971, 308 p. 28. Clegg S.L., Brimblecome P. and Wexter A.S.: A thermodynamic model of system H+–NH4 +– SO4 2- – NO3 ‾ – H2O at tropospheric temperatures.- J. Phys. Chem. A 102, 1998, p. 2127 - 2154. 29. Clegg S.L., Brimblecome P. and Wexter A.S.: A thermodynamic model of system H+–NH4 +– Na+–SO4 2‾– NO3 ‾ – Cl – H2O at 298.15 K.- J. Phys. Chem. A 102, 1998, p. 2155-2171.hermodynamic modeling of aqueous aerosols containing electrolytes and dissolved organic compounds .- J. Aerosol Science, 2001, v. 32, № 6, p. 713-738. 31. Clegg S.L., Seinfeld J.H., Edney E.O. Thermodynamic modeling of aqueous aerosols containing electrolytes and dissolved organic compounds. II. An extended Zdanovskii. Stokes – Robinson approach.- J. Aerosol Science, 2001, v. 32, № 6, p. 667-690. 32. Clegg S.L., Kleeman M.J., Grifin R.J. and Seinfeld J.H. Effects of incertaintes in thermodynamic properties of aerosol components in air qulity model. Part 1. Treatment of inorganic compounds. On the conden sed phase.- Atmos. Chem. Phys, 2008, v. 8, p. 1057-1085. 33. Climate Change 2007: The Physical Science Basis, Contribution of Working Group 1 to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change / Eds: Solomon S., Quin D., Manning M. et al Cambridge, United University Press, 2007, 996 p. 34. Neens A., Pandis S.N. and Pilinis C. ISORROPIA: A new thermodynamic equilibrium model for multiphase multicomponent inorganic aerosol Aqua.- Geochem, 1998, v. 4, p. 123-152. 35. Pierrehumbert R.T. Principles of planetary climate. - Cambridge University Press, 2010, 678 p