DEVELOPING AN APPLICATION FOR FACIAL IDENTIFICATION IN THE JAVA PROGRAMMING LANGUAGE

DEVELOPING AN APPLICATION FOR FACIAL IDENTIFICATION IN THE JAVA PROGRAMMING LANGUAGE

Выбор валюты
Дата публикации статьи в журнале: 25.12,2019
Название журнала: Американский Научный Журнал, Выпуск: № (32) / 2019, Том: 2, Страницы в выпуске: 21-25
Автор:
Nur-Sultan, Eurasian National University named after L.N. Gumilyov,
Автор: Kabdulkarimov Y.Z
Nur-Sultan, Eurasian National University named after L.N. Gumilyov,
Автор:
, ,
Анотация: Abstract. This article describes a developed application for identifying individuals in the Java programming language. For recognition of image templates, the OpenCV library was selected. Based on the methods that the OpenCV library classes offer, a program with a graphical user interface for detecting faces has been developed.
Ключевые слова: identification  recognition  image  pattern  processing  confidentiality  security        
DOI:
Данные для цитирования: Boranbayev S.N Kabdulkarimov Y.Z . DEVELOPING AN APPLICATION FOR FACIAL IDENTIFICATION IN THE JAVA PROGRAMMING LANGUAGE. Американский Научный Журнал. Технические науки. 25.12,2019; № (32) / 2019(2):21-25.

Список литературы: References 1. talk at Creative Think seminar, 20 July 1982, URL: https://www.folklore.org/StoryView.py?project= Macintosh&story=Creative_Think.txt 2. Arandjelovic, R., Gronat, P., Torii, A., Pajdla, T., Sivic, J.: NetVLAD: CNN architecture for weеkly supervised place recognition. In: CVPR (2016) 12 3. Avrithis, Y., Kalantidis, Y., Tolias, G., Spyrou, E.: Retrieving Landmark and Non-Landmark Images from Community Photo Collections. In: ACM Multimedia. pp. 153–162 (2010) 4. Azizpour, H., Razavian, A.S., Sullivan, J., Maki, A., Carlsson, S.: From Generic to Specific Deep Representations for Visual Recognition. In: CVPR DeepVision Workshop (2015) 12 5. Baatz, G., Koeser, K., Chen, D., Grzeszczuk, R., Pollefeys, M.: Handling urban location recognition as a 2D homothetic problem. In: ECCV (2010) 6. Babenko, A., Lempitsky, V.: Aggregating Local Deep Features for Image Retrieval. In: ICCV (2015) 7. Savitch, W.: Absolute Java. Pearson (2016) 8. Babenko, A., Slesarev, A., Chigorin, A., Lempitsky, V.: Neural codes for image retrieval. In: ECCV (2014) 9. Bergamo, A., Sinha, S.N., Torresani, L.: Leveraging Structure from Motion to Learn Discriminative Codebooks for Scalable Landmark Classification. In: CVPR. pp. 763–770 (2013) 10. 1. Fundamentals of Computer Vision, Mubarak Shah, Computer Science Department, University of Central Florida, Orlando, FL 32816, December 7, 2010. 11. The OpenCV 2.4.3 documentation, URL: http://docs.opencv.org 12. Mastering OpenCV with Practical Computer Vision Projects, Published by Packt Publishing Ltd. Livery Place, 35 Livery Street, Birmingham B3 2PB, UK. ISBN 978-1-84951-782-9. 13. Boranbayev, A., Boranbayev, S., Nurusheva, A. Analyzing methods of recognition, classification and development of a software system. Advances in Intelligent Systems and Computing. –2018, Vol. 869, pp. 690-702. 14. Boranbayev, A., Shuitenov, G., Boranbayev, S. The method of data analysis from social networks using apache Hadoop. Advances in Intelligent Systems and Computing. –2018, Vol. 558, pp. 281-288. 15. Boranbayev, S., Nurkas, A., Tulebayev, Y., Tashtai, B. Method of Processing Big Data. Advances in Intelligent Systems and Computing. –2018, Vol. 738, pp. 757-758. 16. Boranbayev A.S., Boranbayev S.N., Khassanova А.А. Comparative analysis of methods of face detection and classification of images // Bulletin of L.N. Gumilyov Eurasian National University №2, 2017. - P.71-89.