HOLOGRAPHIC DEVICES FOR 3-D CONTROL OVER A COMPLEX SURFACE SHAPE (4-8)

HOLOGRAPHIC DEVICES FOR 3-D CONTROL OVER A COMPLEX SURFACE SHAPE (4-8)

Выбор валюты
Дата публикации статьи в журнале: 2020/04/10
Название журнала: Американский Научный Журнал, Выпуск: 34, Том: 2, Страницы в выпуске: 4-8
Автор:
Bolkhov, Bolhov Plant of semiconductor devices Bolhov,
Автор: O I Markov
Orel , Oryol state University I. S. Turgenev,
Автор:
, ,
Анотация: The analysis of the shortcomings of non-destructive testing devices over the geometric characteristics of a part of a complex shape is given. It is shown that the design features of the control device correspond to the geometric model that will be used to calculate the shaping process. The description of the holographic control installation is given. The installation of holographic control is used to determine the geometric characteristics of a complex surface shape. Based on these characteristics, a three-dimensional geometric model is constructed surface and its micro-relief. A three-dimensional geometric model of a complex surface contains information about the curvature in the local area of the selected point. The three-dimensional geometric model of the surface is structured on the basis of a modular geometric approach. A brief concept of the modular-geometric approach that is used to describe the surface geometry and its micro-relief is given.
DOI:
Данные для цитирования: V N Poyarkov O I Markov . HOLOGRAPHIC DEVICES FOR 3-D CONTROL OVER A COMPLEX SURFACE SHAPE (4-8). Американский Научный Журнал. Технические науки. 2020/04/10; 34(2):4-8.

Список литературы: [1] Saccocio E J 1967 Application of the dynamic theory of X-ray diffraction to holography J. Appl. Phys. 38(10) 3994 [2] Kogelnik H 1969 Coupled wave theory of thick hologram gratings Bell Syst. Techn. J. 48(9) 2909 [3] Liu H K et al 1976 Evaluation of a Composite Mobile Holographic Nondestructive Test System BER Rep. No 204–74 (Univ. of Alabama) [4] Liu H K and Owen R B 1979 Opt. Eng. 18 [5] Koenders L et al 2003 WGDM – 7: Preliminary Comparison on Nanometrology According to the rules of CCL key comparisons NANO 2 Step height Standards [6] Motamedi M E 2005 MOEMS: Micro – opto – electro – mechanical systems (Bellingham,Washington, US: SPIE Press) p 614 [7] Lyavshuk I A and Lyalikov A M 2006 Doubte – exposure variable shear holographic interferometry with controlled sensitivity Optics and Spectroscopy 101(6) 962–6 [8] Sevrygin A A, Korotkov V I, Pulkin S A, Venediktov V Yn and Volkov O V 2014 Digital holographic Michelson interferometer for nanometrology Proc. SPIE vol 9271 (Beijing, China: SPIE) 927118 [9] Sevrygin A A, Pulkin S A, Tursunov I M, Venediktov D V and Venediktov V Y 2015 Digital holographic interferometer with correction of distortions Proc. SPIE vol 10799 (St.-Petersburg, Russia: SPIE) 107990A [10] Belkin E A, Poyarkov V N and Stepanov Y S 2016 Installation of holographic control over the process of microrelief formation Proc. Int. Conf. Modern high-performance technologies and equipment in mechanical engineering, MTET-2016 (St. Petersburg, Russia) [11] Stepanov Yu S, Belkin E A and Barsukov G V Pat. RF No. 2215317. Profilograph / Appied: 08.01.2002. Published:27.10.2003. Bull. 30. [12] Belkin E A, Poyarkov V N and Markov O I 2018 Holographic image of the surface layer for 3D modeling. New method of non-destructive testing (Saarbrücken, Germany: LAP Lambert Academic Publishing) p 61 [13] Belkin E A, Poyarkov V N and Markov O I 2018 Holography of the surface layer in the visible range of electromagnetic radiation for its geometric modeling International journal of science, technology and society 6(5) 72-7 [14] Belkin E A, Poyarkov V N and Markov O I 2019 New technologies of surface treatment of complex shape and control over its Geometry and topography of the microrelief International journal of innovative studies and engineering technology 5(4) 9-16