THE THERMO-GAS-DYNAMIC DESIGN METHOD FOR THE LIQUID ROCKET ENGINE CHAMBER

THE THERMO-GAS-DYNAMIC DESIGN METHOD FOR THE LIQUID ROCKET ENGINE CHAMBER

Выбор валюты
Дата публикации статьи в журнале: 25.12,2019
Название журнала: Американский Научный Журнал, Выпуск: № (32) / 2019, Том: 2, Страницы в выпуске: 13-21
Автор:
, National Aviation Academy, Doctor of Physical and Mathematical Sciences
Автор: Samadov Adalat Soltan
, , Prof., Flight Vehicles and Engines Department
Автор: Abdullayev Parviz Shahmurad,
, , Prof., Head of Flight Vehicles and Engines Department
Анотация: Analysis of the thermodynamic and thermophysical properties of combustion products in the liquid rocket engine (LRE) chamber shows that their dissociation degree depends on temperature T, gas expansion degree ε, etc. Practically, combustion products are always chemically active working fluid, therefore the number of moles N of the products varies along the length of the LRE chamber in the entire reaction mixture. The local values of the parameters T and N depend on the specific physical conditions. Therefore, the distribution of local numbers of moles of the components of the gas mixture and its heat capacities can be represented as dependencies N~f(T) and c~g(T). For this purpose on the basis of the numerical values of the moles and the heat capacities of the gas mixture components in the main sections of the LRE chamber are formed as corresponding empirical functions through interpolation. The system of equations for the thermodynamic calculation of LRE chamber is solved by taking into account new functions. Such approach allows forming the optimal contour of the LRE chamber at the preliminary stage of engine design and improving results of the gas-dynamic calculation and nozzle profiling by modified method of characteristics.
Ключевые слова:                     
DOI:
Данные для цитирования: Pashayev Arif Mir Jalal Samadov Adalat Soltan Abdullayev Parviz Shahmurad, . THE THERMO-GAS-DYNAMIC DESIGN METHOD FOR THE LIQUID ROCKET ENGINE CHAMBER. Американский Научный Журнал. Технические науки. 25.12,2019; № (32) / 2019(2):13-21.

Список литературы: References Abdulla, N. (2019) Implementation of variable specific heat ratio in liquid rocket nozzle design using method of characteristics, Proceedings of the IV International Scientific and Practical Conference “Creative Potential of Young People in the Solving of Aerospace Problems, February Readings-2019”, National Aviation Academy, Baku, Azerbaijan, February 27-28, 2019, p.28–31. Abdullayev, P.Sh., Ilyasov, M.Kh., (2017), Dualscheme profiling technique for the liquid rocket engine nozzle. AIAC-2017-1051, METU, 9th Ankara International Aerospace Conference, 2017. Alemasov, V.E., Dregalin, A.F., Tishin, A.P. (1989) Theory of Rocket Engines. A Textbook for High Schools, Ed. V.P. Glushko., Moscow, Mashinostroeniye, 464 p., in russian. Anderson, J.J. (1982) Modern Compressible Flow: With Historical Perspective. New York: McGraw-Hill Book Company. 1982. Babkin, A.I., Dorofeev, A.A., Loskutnikova, G.T., Filimonov, L.A., Chernukhin, V.A. (1990) Calculation of parameters and characteristics of the RE camera, Edited by Babkin A.I. Moscow: MGTU., in russian. Belov, G.V., Trusov, B.G. (2013) Thermodynamic modeling of chemically reacting systems. Moscow, MSTU named after E.E. Bauman, 96 p., in russian. Bonnie, J.M., Michael, J.Z., Sanford, G. (2002) Coefficients for Calculating Thermodynamic Properties of Individual Species. Glenn Research Center, NASA TP-2002-211556, NASA Glenn Cleveland, Ohio, USA. Brykov, N.A., Volkov, K.N., Emelyanov, V.N., and Teterina, I.V. (2017) Flows of Ideal and Real Gases in Channels of Variable Cross Section with Unsteady Localized Energy Supply, Computational methods and programming, T.18, N1, http://nummeth.srcc.msu.ru/zhurnal/ tom_2017/pdf/v18r103.pdf, p.20-40., in russian. Bulygin, Yu.A., Kretinin, A.V., Rachuk, V.S., Faleev, S.V. (1997) Calculation of the thermal state of the liquid propellant rocket engine, Editor V.P. Kozelkov, VSTU, Voronej, 1997, 90 p., in russian. Cantwell, B.J. Aircraft and Rocket Propulsion, (2015) AA283 course, Stanford University, Stanford California, 94305, https://web.stanford.edu/~cantwell/ AA283_Course_ Material/AA283_Course_Notes/, January 6, 2019, viewed in 25.03.2019. Colonno, M.R. Van der Weide, E., Alonso, J.J. (2008) The Optimum Vacuum Nozzle: an MDO Approach, 46th AIAA Aerospace Sciences Meeting and Exhibit, AIAA 2008-911, 7 - 10 January 2008, Reno, Nevada Fu, L., Zhang S. and Zheng, Y. (2016) Design and Verification of Minimum Length Nozzles with Specific/Variable Heat Ratio Based on Method of Characteristics, International Journal of Computational Methods V.13, N.06 Glushko, V.P., Alemasov V.E. and others. (1971- 1976) Thermodynamic and thermophysical properties of combustion products, A guide in 10 volumes. Under the scientific. by the hand of V. P. Glushko, USSR Academy of Sciences, Moscow, VINITI, Volume 1., in russian. Gordon, S. and McBride, B. (1994) Computer Program for Complex Chemical Equilibrium Compositions and Applications, Vol.1. Analysis, NASA RP 1311. Gurtovoy, A.A., Ivanov, A.V., Skomorokhov, G.I., Shmatov, D.P. (2016) Calculation and design of LPRE aggregates, Voronezh, VSTU, in russian. Gurvich, L.V., Veitz, I.V. et al. (1978-82) Thermodynamic Properties of Individual Substances. in 4 volumes, Eds. V.P. Glushko et al., Nauka, M., in russian. Hill, P., Peterson, C. (1992) Mechanics and Thermodynamics of Propulsion, Addison-Wesley Publishing Company, 2nd Edition. Kestin, J. (1950) Influence of Variable Specific Heats on the High-speed Flow of Air, A.R.C. Technical Report, C.P. No.33 (13.176), London his majesty’s stationery office, Polish University College. Kyprianidis, K.G., Sethi, V., Ogaji, S.O.T., Pilidis, P., Singh, R., Kalfas, A.I. (2009) Thermo-fluid modelling for gas turbines-part 1: Theoretical foundation and uncertainty analysis, GT2009-60092, Proceedings of ASME TURBO EXPO 2009, : Power for Land, Sea and Air, GT2009, June 8-12, 2009, Orlando, FL, USA. Paşayev, A., Abdullayev, P. and Samedov, A. (2018) Sıvı yakıtlı roket motorunun itme odasının geliştirilmiş tasarım yöntemi, SAVTEK 2018, 9.Savunma Teknolojileri Kongresi, ODTÜ, Ankara, 27-29 Haziran, 2018. Rizkalla, O., Chinitz, W. and Erdos, J.I. (1990) Calculated Chemical and Vibrational Non equilibrium Effects in Hypersonic Nozzles, Journal of propulsion and power, pp.50-57. Sutton, G.P. (2010) Rocket Propulsion Elements, New York: John Wiley & Sons, Inc., Vasiliev, A.P., Kudryavtsev, V.M., Kuznetsov, V.A., Kurpatenkov, V.D., Obelnitsky, A.M., Polyaev, V.M., Poluyan, B.Y. (1983) Fundamentals of the theory and calculation of liquid rocket engines, Textbook. Edited by V.M. Kudryavtsev. Moscow, High School, 3rd edition, revised and enlarged, 703 p., in russian. Zebbiche, T. (2011) Stagnation temperature effect on the supersonic axisymmetric minimum length nozzle design with application for air, Adv. Space Res. 48 (10), 1656–1675.